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Introduction

Persons attempting to find a motive in this narrative will be prosecuted;
persons attempting to find a moral in it will be banished;
persons attempting to find a plot in it will be shot.

You will remember that Mark Twain included those words before his novel Huckleberry Finn. I suppose something 
similar could be said about this book but substituting the words rigor, completeness or pedagogical correctness.

This book is  not aspiring to be the universe’s authority on introductory physics. It is not even a self-contained 
treatment of the subject. Rather it’s a resource designed with the hope of making your experience in physics a 
bit easier.

When a professor writes a textbook, there is a lot to be wary of. Typically, the professor is very proud of it. 
Often they possess some unhealthy expectation that students will parse and ponder each glorious sentence, 
appreciating and worshiping their wisdom enshrined between two glossy book covers. More than this, once a 
professor has written a text for a course, some seem to labor with the impression that their text can run their 
course for them.

But this book only aims to be a resource for assisting you in trigonometry-based physics classes. While it’s a bit 
more focused and much less expensive than our previous text, I’m under no delusion that it is far from perfect. 
But I do believe it’s better option than what we were using before.

What Exactly Do You Mean By “Hand-Holding”?

This textbook is backwards designed around getting students to be self-sufficient in physics problem-solving 
strategies. Learning objectives were established first, then problems sets were developed with those goals in mind. The 
chapter text, discussion and examples were written last. Physics is a sweeping landscape of topics wherein it is easy to 
lose direction. If I thought a particular topic did not help students hone their physics problem-solving capability, it 
was cut from the text.  It is hoped that this book will feel more “focused” than off-the-shelf physics books.

At the suggestion of students, this text contains more examples per page than any other physics text of which I am 
aware. While some texts highlight the importance of the correct answer, I emphasize correctness of process and 
method of approach, a priority which is reflected strongly between these covers.

As I prepared notes for my PHYS 2010 course the past few years, I stuck them under the working title “Physics 
By Hand-Holding.” It was a joke between students and me, an acknowledgment that we were committing some 
type of apparent sin making the discipline approachable.
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If I buy a textbook, I expect to be smarter after reading it. That burden is on the author. I paid them hundreds 
of dollars. I did not purchase the book to find out how smart the author is, or to learn how difficult a subject is. 
A textbook should make me proficient in its subject with the least hassle possible. Full stop.

My impatience with stuffy physics textbooks has led to me adopt a comparatively explicit teaching style. This is 
the kind of textbook-writing which some specific other authors might term “hand-holding.” True, “hand-holding” 
is sometimes a derogatory expression for teaching in a way which requires little effort from students. But that is 
not the intent of this book.

The Philosophy of This Text

The primary goal of this book is to build a student’s confidence that they (and anyone!) can solve a physics 
problem. Once that confidence emerges, a student suddenly finds themselves free to appreciate the principles and 
patterns which motivate a problem-solving technique. In this sense, we hand-hold. We walk students through 
problem-solving strategies step by step, treating simple problems first and then working toward more complex 
ones.

If the title sounds academically shameless, it is meant to. This particular book for my classes blatantly attempts 
to teach trigonmetry-based physics more on a student’s terms. Often as I wrote this text and looked at my photo 
rosters for my courses, I asked the question: “in what way could I present this that a student would find helpful?”

Changing Times

There is a growing movement in the physics community toward accessibility in textbooks. This was not always 
the case. My shelves are full of books which indulge in high-level abstraction at the reader’s expense.

But readers are loosing patience with technical books which play hide-and-seek with the reader. Publishers are 
noticing a large, untapped market to exploit of people who don’t like to feel like idiots as they read books. It 
turns out, pages of densely-packed equations usually aren’t the best way to convey a broad idea to a newcomer 
of a discipline. Princeton University Press has launched a high-profile physics textbook series under the title In 
A Nutshell, for example, which aims for accessible but rigorous introductions to fields such as quantum field 
theory, string theory or Einstein’s relativity. 

A. Zee, a prolific author of several landmark physics texts on topics including Einstein’s gravity and quantum field 
theory, begins his 800-page textbook on General Relativity with the following reflection on physics textbooks in 
general:

Some textbook writers are simplifiers, others are what I call complicators. In defiance of
Einstein’s exhortation, many authors strive to make physics as complicated as possible, or
so it seems to me. In the research literature, the cause of obscurity may be unintentional or
intentional: either the author has not understood the issues involved completely . . ., or the
author wants to impress upon the reader the profundity of his or her papers by resorting to
obfuscations. But in a textbook?

I aspire to be what Prof. Zee calls a simplifier. The most valuable compliment I could ever aspire to in regard to
this work is if a student told me they felt this book somehow simplified their physics experience.

vi
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Textbooks Aren’t Really Meant To Be “Read”

Many textbooks are written seemingly oblivious to the fact that students won’t be reading them. Odds are that 
students will not have time to read 350+ pages of physics textbook during a 15 week semester. At least not 
when every other class they have has the same expectation.

The trick is preparing a textbook which can be easily used as a quick reference but also connects ideas across a 
chapter in a meaningful and coherent way. If you don’t have the latter piece, you’re little better than a physics 
study guide.

There are a couple of things which this book does to try to help with quick referencing.

• Printed notes in margins highlight key points in adjacent text

• Examples are boxed and color-coded to allow students to quickly find them

• Key equations are highlighted in text

• Frequent subsections to guide students to particular discussions

• Bad examples are shown in strikethrough so that a desperate student flipping through the text for an easy
answer won’t write down an abomination.

The book is also type-set in LATEX which handles and the equations, figures, examples, chapter headings and all 
other formatting options to give the book a uniform look.

Another fact which many writers forget is the mind doesn’t normally learn by reading a minutely-detailed 
argument assembled from first principles. In my experience, the brain learns by gaining the broad-brush picture 
first and then filling in exceptions and nuances later on. A colleague might notice that I teaching something 
which is technically wrong or not very precise and then go on to be more careful about the topic in subsequent 
chapters. I believe in “milk before meat” though I could see a colleague claiming I’ve desecrated something 
sacred in the effort to establish the “general idea.” The physics deities have not struck me dead yet for profaning 
the discipline, perhaps because I think I clean up after myself okay later on.
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Balance and Elasticity

Figure 8.1: Elastic materials
such as spider silk or tendons
can be modeled as springs, a
topic of this chapter. Credit:
Tom Friedel under CC BY 3.0
US, http://www.birdphotos.com;
https://commons.wikimedia.org/
wiki/File:Golden-silk-spider.jpg.
Wikicommons.

This chapter contains two important but unrelated topics. We are going
to cover the last few applications of torque (equilibrium and balance)
and then discuss springs and material strength. The good news is that
this is the last you will see of torque in this course.

8.1 Torque Equilibrium

Because I introduced center of mass after introducing torque I don’t feel
like we ever defined torque the “right” way. Torque is what happens
when a force acts on an extended object in a way which rotates it. Torque
can happen even when an object has no pre-defined “pivot.” If an object
is equally free to rotate about every point, forces can create a torque
about the center of mass of an object.

So the reason forces didn’t exert torques in prior chapters is that we were
subtly assuming all our masses had no spatial extent. We were effectively
assuming that every mass was a point particle.

We’ve talked in Chapter 5 about force equilibrium. When forces on an
object are balanced, the object didn’t feel an acceleration in any direction.
When torques are balanced on an object, the object will not feel an
angular acceleration.
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In this chapter, we’re going to introduce a new type of equilibrium
problem: one for spatially extended objects. Because forces on such
objects aren’t necessarily directed into their center of mass, some will
exert a torque. But if the object is just sitting there and not rotating,
the sum of the torques on the object will equal 0.

∑
τ = τ1 + τ2 + τ3 + . . . = 0 (8.1)

When an object is static.

But we can even say something stronger than this. Remember that 
torques are defined in part by their distance from some pivot1. There 
are plenty of extended objects which have no rotating parts. Take a look 
at the hanging sign in Figure 8.2. There is no obvious place on that 
pole about which it should be rotating, because the whole thing should be 
staying put!

While this might appear to be a dilemma, it turns out to be a blessing. 
Because of this, the sum of the torques around every point is equal 
to zero. That turns out to be so important I’m going to highlight it.

For a static object, the sum of the torques about any point is
zero.

For these static problems, you get to choose your own pivot. The problem
works by you summing torques around your chosen pivot, setting it equal
to zero and solving for a desired unknown.

That’s not to say that some pivots aren’t better to choose than others.
There’s a strategy about this that we’ll show you as we start examples.

The two major types of problems which show up the most in this vein are
plank problems and hanging sign problems. Both problems have
the following major steps:

1. Choose a pivot point (again, there’s a strategy for each problem
you encounter)

2. Choose a positive rotational direction about your chosen pivot
3. Draw all the forces acting on the object
4. Sum torques and set them equal to zero (also sum forces in y

direction if needed)
5. Solve for your desired unknown

We’ll show you how to take care of hanging sign problems first.

Hanging Sign Problems

A pole is mounted on a wall. In Figure 8.2, a cable is attached to the
far end of the pole and also mounted on the wall. The pole and cable

1Remember that torque has a radius r in its formula: τ = rF sin φ.
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support a sign which has some weight.

Figure 8.2: A hanging sign
problem. The problem might ask
what is the tension in the cable?

I’m going to restate the rules we just mentioned but give more detail
specific for hanging signs:

1. Choose a pivot point
For these problems, more often than not, choose your pivot to
be at the base of the pole. You can technically choose your
pivot to be anywhere, but placing it at the base of the pole makes it
so your don’t have to worry about forces exerted on the bar there:
the radius to that force will be zero!

Pivot

2. Choose a positive rotational direction about your chosen pivot
I usually choose counter-clockwise as habit, but feel free to choose
whichever direction you want.

3. Draw all the forces acting on the object
Draw all the forces as vectors and label them. You will usually
have a tension from a cable holding up the pole and at least one
from some mass hanging from the pole. Don’t forget the mass
of the pole itself. The weight of the pole should be an arrow
half-way along the length of the pole, because the center of mass
of an object in the absence of all other knowledge is in its center.

T

msg

mpg

Pivot

+ direction

4. Sum torques and set them equal to zero (also sum forces in y
direction if needed) Make sure you remember each torque’s sign.
What direction would each force try to rotate the pole?

I think it is important to remember, though, that these are just torque
problems. The only thing different about what we are doing is choosing
a specific point on a object to be a pivot and always setting the sum of
the torques equal to 0.

Let me pre-empt a possible question: why can’t we just sum forces in
the x and y direction and get the answer? On a practical level, because
these problems wouldn’t give you enough information to do that. In a

189



Chapter 8: Balance and Elasticity Brandon Wiggins

hanging sign problem, there is a force provided by the wall on the beam
in addition to the unknown which makes these problems impossible to
tackle the old way. Thankfully, the objects in these problems are spatially
extended. That means that all the forces acting on the object are unlikely
to pass through the same point and will exert torques on the object. So
torque becomes the way we can get at the unknown.

We are just going to jump into a series of examples. In the first, we’ll
find the tension in a cable attached to a pole holding up a sign. These
are the vanilla problems.

25◦

T

msg
mbg

+

Figure 8.3: Forces are now la-
beled on my pole holding up the
hanging sign. I’ve indicated the
positive rotational direction I’ve
chosen with a dashed arrow.

Example 8.1

A 10 kg sign hangs from a 2 kg rod supported by a cable as shown.
The rod is attached to a wall by a pivot. What is the tension of
the upper cable?

25◦

0.8 m

10 kg

Choose a pivot
We’ll use the base of the rod on the wall as the pivot.

Choose positive rotational direction
Let’s say counter-clockwise is positive. All torques that would rotate
the rod clockwise about its base will henceforth be positive.

While we are at it, I’m going to redraw the figure with all the forces
labeled. This appears in Figure 8.3. ms is the mass of the 10 kg
sign, and mb is the mass of the beam.

Don’t forget the beam itself! The beam has a weight which acts
through the beam’s center of mass. Remember that in the absence
of all other knowledge, the center of mass of an object is always in
its center.

All torques add up to zero
We find the torque from each force (arrow that I have drawn) with
τ = rF sin φ.

Tension T : +rF sin φ = +(0.8 m)T sin 25◦

Hanging Sign msg: −rF sin φ = −(0.8 m)msg sin 90◦

= −(0.8 m)(10 kg)(9.8 m/s2)(1)
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Beam’s mass msg: −rF sin φ = −(0.4 m)mbg sin 90◦

= −(0.4 m)(2 kg)(9.8 m/s2)(1)

All of these will add to zero:

+ (0.8 m)T sin 25◦ −(0.8 m)(10 kg)(9.8 m/s2)(1)
− (0.4 m)(2 kg)(9.8 m/s2)(1) = 0︸︷︷︸

static

The tension T can be isolated and solved for. Add over the 2 terms
not containing T and divide both sides by (0.8 m) sin 25◦. We get

T = (0.8 m)(10 kg)(9.8 m/s2) + (0.4 m)(2 kg)(9.8 m/s2)
(0.8 m) sin 25◦ = 255 N.

There’s another variant of the problem where you are asked for just the
needed torque to keep a system from moving. Sometimes they’ll ask how
much torque an odd object must exert to do this when we have been
given no information on how this object works. This is okay, it turns out.
we actually don’t need to know that. All they are asking about is torque.
And this is an easy quantity to calculate.

Let’s do another example.

40◦

T = 60 N

msg

mbg

+

Figure 8.4: Illustration for Ex-
ample 7.2 with forces and positive
direction labeled.

Example 8.2

What torque must the brace at the base of the 1.5 kg bar exert
on the bar to keep it stationary?

40◦

T = 60 N

0.1 m 0.3 m

6 kg

If the bar is stationary, the sum of the torques on the bar is 0.
Let’s find the net torque on the bar with all the labeled forces. The
brace must be providing exactly opposite of that.

Choose a pivot
Let’s again choose the base of bar as the pivot.

Choose positive rotational direction
Let’s say counter-clockwise is positive. As with the other examples

191



Chapter 8: Balance and Elasticity Brandon Wiggins

I’m going to redraw the figure with all the forces labeled. This
appears in Figure 8.4. ms is the mass of the 10 kg sign, and mb

is the mass of the beam.

All torques add up to zero
We find the torque from each force (arrow that I have drawn) with
τ = rF sin φ.

Tension T : +(0.4 m)(60 N) sin 40◦

Weight of beam mbg : −(0.2 m)mbg sin 90◦

= −(0.2 m)(1.5 kg)(9.8 m/s2)

Hanging sign msg : −(0.1 m)msg sin 90◦

= −(0.1 m)(6 kg)(9.8 m/s2)

Torque from brace τ1

Again, all of these torques add up to zero:

+(0.4 m)(60 N) sin 40◦ −(0.2 m)(1.5 kg)(9.8 m/s2)
− (0.1 m)(6 kg)(9.8 m/s2) + τ1 = 0︸︷︷︸

static

This can be solved for τ1 by subtracting (0.4 m)(60 N) sin 40◦ and
adding (0.2 m)(1.5 kg)(9.8 m/s2) and (0.1 m)(6 kg)(9.8 m/s2) to
both sides. We get

τ1 = −(0.4 m)(60 N) sin 40◦ + (0.2 m)(1.5 kg)(9.8 m/s2)

+(0.1 m)(6 kg)(9.8 m/s2) = 6.6 N m.

Hanging sign problems have a consistent rhythm to them. These two
examples are pretty representative of what you will see.

These problems, more than Chapter 5 problems, have a consistent
rhythm. If you can get the rhythm down, you can pretty well crack any
problem which comes your way.

Plank Problems

Figure 8.5: Plank problems in-
volve a plank laying across some
objects. A question might ask
what is the upward force through
the left fulcrum?

In these problems a plank (a spatially extended object) is stretched over
some objects. Often the plank rests on a fulcrum which is a fancy word
for a triangle-shaped object which, in the absence of the other objects,
the plank could tip over.

Again, this might not strike you as a rotational problem, so why are we
using torques again? The plank is spatially large which means that forces
acting on the board have a strong change of not being directed through
its center of mass. So most forces will exert a torque on the object.

And because nothing is moving in this situation, the sum of those torques
had better be equal to zero.

I’m going to again restate the rules for solving torque problems, but this
time be specific to plank problems.
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1. Choose a pivot point
For statics problems, choose the fulcrum you are not interested in
at your pivot. Choosing a pivot on the location where a force is
acting eliminates the force from your torque equation.

2. Choose a positive rotational direction about your chosen pivot

3. Draw all the forces acting on the object
Draw all the forces as vectors and label them. All fulcrums exert
an upwards force no the board and all masses on top exert a
downwards force. Don’t forget the mass of the pole itself.
The weight of the plank should act at half-way along the length of
the plank,

4. Sum torques and set them equal to zero (also sum forces in y
direction if needed) Make sure you remember each torque’s sign.
What direction would each force try to rotate the plank about your
chosen pivot?

We’ll show you how these fit together in an example.

25 cm 30 cm 10 cm

F1

4g 8g

mpg
+

Figure 8.6: Forces and chosen
positive direction for the plank
problem in Example 7.3

Example 8.3

What force does fulcrum 1 (F1) exert on the 3.0 kg plank?

F1 F2

8 kg4 kg

25 cm 30 cm 10 cm

Why can’t I just sum forces in the y direction to get the answer?
Because there are 2 unknowns: F1 and F2 are both not given. One
equation and 2 unknowns does not a happy physics student make.
Let’s sum torques instead. (Plus there are fulcrums (triangles)
in this problem which gives it away that I need to use torques to
solve the problem.)

Choose a pivot
We want to choose a fulcrum as the pivot. Choose the fulcrum
which isn’t the unknown. We’ll choose fulcrum 2.

Choose positive rotational direction
Let’s choose counter-clockwise as positive. I’m going to redraw
the plank with all of the torques acting on it in Figure 8.6. The
curved arrow indicates my chosen positive direction.

Note that I have included the weight of the plank mpg. The plank’s
weight acts through the plank’s center-of-mass: the middle of the
plank. The plank is 65 cm long, so it will act at 32.5 cm from our
pivot.
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All torques add up to zero
We find the torque from each force (arrow that I have drawn) with
τ = rF sin φ. Because all forces are perpendicular to the plank, I’m
going to simplify this to τ = rF . This is okay because sin 90◦ = 1.

Fulcrum 1 F1: −(0.65 m)F1

4 kg box 4g: +(.40 m)(4g) = +(.40 m)(4 kg)(9.8 m/s2)

8 kg box 8g: +(.10 m)(8g) = +(.10 m)(8 kg)(9.8 m/s2)

Plank mpg: +(.325 m)(mpg) = +(.325 m)(3 kg)(9.8 m/s2)

All of these will add to zero:

−(0.65 m)F1 + (.40 m)(4 kg)(9.8 m/s2)
+ (.10 m)(8 kg)(9.8 m/s2) + (.325 m)(3 kg)(9.8 m/s2) = 0︸︷︷︸

static

Subtract over all terms which do not include F1 and then divide
both sides by -(0.65 m) to find F1:

−(0.65 m)F1 = −(.40 m)(4 kg)(9.8 m/s2)
−(.10 m)(8 kg)(9.8 m/s2)
−(.325 m)(3 kg)(9.8 m/s2)

We now divide both sides by -0.65 m and get

F1 = 50.88 N.

8.2 Balance

mg

Effective fulcrum

direction of tip

Figure 8.7: When an object
tips, one point of the object re-
mains on the ground: an effective
fulcrum. Whatever side of the
fulcrum the center of mass falls
will be the side the object tips to.

If you were to step out onto a sheet of ice unexpectedly, how would 
you stand to avoid falling over? Instinctively, you would put your feet 
far apart and crouch lower. Your body is exploiting a key point about 
balance: if your center of mass is directly over a (now much larger) base 
of support, you won’t fall over.

Just because an object tips doesn’t mean that it will tip over. You push 
on a dresser and it may fall back from where it was standing. But push it 
too far and the story is different. What makes the difference? Whether or 
not the center of mass of the dresser remains over its base of support.

Said another way, as anything tips, a single point of the object remains 
touching the ground. This is like an effective fulcrum (see Figure 8.7). 
Which ever side of the fulcrum the gravitational force from the center of 
mass of the object falls is how the object will tip.

What this means is we can now predict the tipping angle for an object. 
This is summed up in the following idea:

The critical tipping angle θ of an object happens when the
center of mass is above the effective fulcrum.
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Figure 8.8: If the center-of-
mass of an object is above the
base of its support, it will bal-
ance. This bottle and board, con-
structed by Prof. Rhett Zollinger,
demonstrates this dramatically.
The combined center of mass
for this glass bottle and wood
board is position directly over the
board’s small edge, allowing it to
balance.

Example 8.4

Calculate the tipping angle for the object below.

0.4 m

0.6 m

The object will be on the verge of tipping when its center of mass
(presumably in the middle of the object because I have no reason
to believe otherwise) is over the effective fulcrum.

I’m going to draw the object again, but tipping so that its center
of mass is just over the fulcrum.

θ 0.2 m

0.3 m
θ

Once I do this, you can see that there’s a right triangle which forms
there. I’ve drawn a blow up of it off to the right. Because the center
of mass is in the middle of the object, the sides of this triangle are
half the length and width of the box.

Notice also that the angle between the vertical and the tilted vertical
direction is also θ. This reason for this is similar to the argument
about the inclination angle of a slope is the same as the angle
between the direction of gravity and the negative y axis.

You can now use tan θ =opposite/adjacent to solve for θ:

θ = tan−1
(0.2 m

0.3 m

)
= 33.7◦.

Most problems about tipping angle can be solved this way. Draw the
object in a configuration where the center of mass of the object is directly
above the object’s sole contact point (or effective fulcrum), construct a
right triangle, and solve for the angle of interest.
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What The Critical Angle Means

The critical angle is a rough measure of what we call stability. The larger
the critical angle, the more stable the object is against tipping over.

Objects with relatively high centers of masses are less stable because
a smaller tip will place the object’s center of mass outside the base of
support. This agrees with intuition: when an object is top heavy it is
easier to topple.

Cars are rated by their base-to-height ratio (called a Static Stability
Factor or SSF) and objects with low base-to-height ratios are labeled has
having a higher tipping risk. “Taller” vehicles need to take corners slowly
because they are in greater danger of rolling.

Teeter Totters

Physics problems involving balance can frequently involve multiple objects.
A handy example is “teeter totter” problems. A board is placed on a
fulcrum with a mass on one side and we are asked where to place second
mass or we are asked how much that mass should be. There are two
ways to go about these problems.

• We can sum torques, taking the location of the fulcrum of the
teeter totter as the pivot. We set the net torque to 0 which indicates
rotational equilibrium and solve for the desired unknown.

∑
τ = r1F1 + r2F2 + r3F3 + . . . = 0

The pivot will be the location of the fulcrum

Notice that I’ve left off the sin φ on each torque term (it should
be e.g. r1F1 sin φ). I’ve done this because the torques in these
problems are weights which often act a right angles with respect
to the radial.

• Or we can use the center of mass formula and require that
the center of mass of the system be directly over the fulcrum.

xcom = x1m1 + x2m2 + x3m3 + . . .

m1 + m2 + m3 + . . .

The center of mass should be at the location of the pivot.

If you look closely at the formulas, they are actually saying the exact
same thing. r1F1 in one formula parallels x1m1 in the second formula.
Nevertheless, you’ll probably develop a preference for which formula you
end up using to solve these problems.

I going to present a problem where we solve it each way over two examples.
You can pick the method which works well for you.
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Example 8.5

Two masses sit on a teeter totter as shown. What is m the mass of
the leftmost block which balances the system? Assume the board
is massless.

2 kgm

0.25 m 0.60 m

We are going to sum torques to solve this.

I’ve labeled forces and chosen a positive rotational direction
in Figure 8.9. Remember that the board is massless, so I don’t
include a weight for it.

I now sum torques∑
τ = (0.25 m)m(9.8 m/s2)−(0.60 m)(2 kg)(9.8 m/s2) = 0︸︷︷︸

system
balances

(literally!)

All we need to do is solve for m. Adding (0.60 m)(2 kg)(9.8 m/s2)
term and dividing by (0.25 m)(9.8 m/s2) gives

m = (0.60 m)(2 kg)(9.8 m/s2)
(0.25 m)(9.8 m/s2)

= 4.8 kg

2 kgm

(2 kg)gmg

Figure 8.9: Positive direction
and forces of the two blocks on
the balancing plank.

Example 8.6

Two masses sit on a teeter totter as shown. What is m the mass of
the leftmost block which balances the system? Assume the board
is massless.

2 kgm

0.25 m 0.60 m

We are going to use the center of mass formula to solve this.

I’m going to choose my origin to be the center of the fulcrum.
That means that the block of mass m is located at negative 0.25
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m (remember that signs matter in the center of mass formula) and
the 2 kg block is located at +0.60 m because it is to the right of
the origin. I also know that that the center of mass of the system,
if it is balanced, is located directly over the fulcrum, xcom = 0 m.
Plugging this all into the center of mass formula gives

(0 m) = (−0.25 m)m + (0.05 m)(2 kg)
m + 2 kg

Multiplying both sides by m + 2 kg gives

(0 m) = (−0.25 m)m + (0.60 m)(2 kg)

so, solving for m gives

m = −(0.60 m)(2 kg)
−0.25 m

= 4.8 kg

Either strategy gets you the right answer, so you feel free to take
your pick as to which method is easier.

Walk The Plank

What is the farthest an object can be placed on a board hanging over
a ledge before the plank and box tip over the edge? This is another
question which can be answered with either torques or a center of mass
argument.

These are just glorified torque problems with one twist2. These prob-
lems ask either how large on object can be or how far out past an edge
an object can be placed before the system tips.

But what happens when something tips?

Normally, the torques acting on a board might look like this:

F1 F2

6 kg3 kg

F1 F2

m6gm3g

mBg

When a board is just about
to tip over some point,
that point provides the
only upward force on the
board.

But say that the board is about to tip over fulcrum 2 (F2). At the very
instant the board starts to tip. The forces on the board actually look
like this:

2I’ve waited a full chapter for that pun.
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F1 F2

6 kg3 kg

F2

m6gm3g

mBg

Which is to say that the left-most fulcrum no longer supplies an upward
force. Why? When the board is just barely about to tip, it is balancing
on the fulcrum about which it will tip over. That fulcrum provides the
only upwards force at that instant.

The same thing takes place with boards on tables, by the way. Normally,
the table would exert a normal force along the length of the board. But
when the board is about to tip, the board momentarily balances on the
edge of the table, and the table’s edge provides the only upwards force.

6 kg3 kg

F

m6gm3g

mBg

Why does any of this matter? This discussion boils down to two things:

When a board is about to tip

1. The only upward forces is provided by the effective fulcrum.

2. The location of your chosen pivot when you sum torques
should be the effective fulcrum (a.k.a. tipping point).

What this means is that when you have a problem which asks about
conditions when a system is going to tip, you need to identify the tipping
pivot of the system. The problem only becomes solvable when you choose
this fulcrum as your pivot because forces acting through pivots don’t
appear in torque summations: you don’t want to deal with the unknown
upwards force provided by the fulcrum as your solving for your unknown.

Once last piece of counsel: when you are doing these tipping problems,
watch carefully for how the problem defines the length they are looking
for. If the problem asks for a distance between the effective fulcrum
and the mass, solving for it is straightforward. But sometimes this is
not the distance they ask for. I’m going to carry out two examples of
an identical problem but in which each example asks for the distance in
different ways. See if you can spot the difference in my approach.
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Example 8.7

Two blocks rest on a 2.0 kg board. What is the maximum distance
x that a block can be placed before the board tips over?

6 kg 3 kg

0.2 m
0.7 m

x=?

1.2 m

We are going to sum torques about the edge of the table:∑
τ = −(6kg)(9.8 m/s2)(0.2 m) − (2kg)(9.8 m/s2)(0.1 m)

+(3 kg)(9.8 m/s2)x = 0

Notice that there are only “downward” forces in this equation (see
Figure 8.10). An upward force is provided by the edge of the table,
but because that also happens to be where we have chosen to put
our pivot, the radius to that force is 0 m and so it doesn’t show up
in our equation. x is now easy to solve for:

x = (6kg)(9.8 m/s2)(0.2 m) + (2kg)(9.8 m/s2)(0.1 m)
(3 kg)(9.8 m/s2)

= 0.467 m.

If I place the board any farther from this, the board and blocks will
tip over the edge of the table.

6 kg 3 kg

m6g

F

m3g

mBg

+

Figure 8.10: Labeled forces and
positive direction for Example 8.7.
Our choice of pivot is at the edge
of the table. Notice that the only
upward force at the moment of
tipping is at location of our pivot
(tipping point at edge of table)
and so it doesn’t show up in our
torque equation.

In the above example, the distance they asked for was the same as the
distance between the effective fulcrum and the box. That’s the same as
asking for a radius of the box to the pivot which is why I just put x in for
r. But sometimes you have to be on your toes.

If, for instance, they ask for the minimum distance from the edge a mass
can be without causing things to tip over, you handle this by subtracting
x from the length of board hanging off the table. It is this quantity which
you insert for r.

Quick example: What is the radius to the box?

1 kg

x=?

0.7 m

The distance to the box from the edge of the table (effective
fulcrum) would be (0.7 m − x). This would be what I would use
for r when adding the torque for the 1 kg box.
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Example 8.8

Two blocks rest on a 2.0 kg board. What is the minimum distance
x that a block can be placed before the board tips over?

6 kg 3 kg

0.2 m
0.7 m

x=?

1.2 m

I might be tempted to sum torques this way:∑
τ = −(6kg)(9.8 m/s2)(0.2 m) − (2kg)(9.8 m/s2)(0.1 m)

+��������
(3 kg)(9.8 m/s2)x = 0

But this is wrong because the torque equation needs the distance
from the block to the pivot, not the distance from the block to the
edge of the plank.

The amount of board hanging over the edge of the table is 0.5 m
(it’s a 1.2 m plank and 0.7 m of it is on the table). Is the distance
between the 3 kg block and the edge of the table would be 0.5 m
−x. So our equation should look like∑

τ = −(6kg)(9.8 m/s2)(0.2 m) − (2kg)(9.8 m/s2)(0.1 m)

+(3 kg)(9.8 m/s2)(0.5 m − x) = 0

This equation will take a little bit of work to solve.

(0.5 m − x) = (6kg)(9.8 m/s2)(0.2 m) + (2kg)(9.8 m/s2)(0.1 m)
(3 kg)(9.8 m/s2)

I’m going to simplify the right-hand-side:

(0.5 m − x) = 0.467 m

which simplifies to

x = 0.5 m − 0.467 m = 0.333 m.

I will also point out that if you get a problem which asks for an
awkward distance like this, you can solve it like Example 8.7 above
and then take your answer and subtract it from the length of the
plank hanging over the edge of the table. I would accept either way.
Just know that when the requested distance is given from the edge
of the plank, there’s a little more work involved than when it is
requested from the pivot.

Beware of problems which
ask for distances which
are NOT the distance be-
tween a mass and the
pivot.

You can also use the cen-
ter of mass formula to
solve “tipping” problems

There is a yet another way to solve these problems which students find
conceptually easy as well. You can use the center of mass formula and
set the center of mass of the blocks and boards to be the edge of the
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table or the location of the tipping fulcrum.

The physics principle that you’re using here is that something is balanced
so long as its center of mass is over the base of support. Thus the
maximum distance some mass can be placed from the edge of a table
happens when the center of mass for the whole system is right at the edge
of the table. If you place the block at any greater distance, the center of
mass for the whole system will move beyond the table and everything
will tip over the edge.

Example 8.9

Two blocks rest on a 2.0 kg board. What is the maximum distance
x that a block can be placed before the board tips over?

3 kg 3 kg

0.4 m
0.5 m

x=?

0.9 m

We’re going to show you how to use the center of mass formula to
tackle this. The maximum allowable center of mass for the system
is the edge of the table. Any farther than this, and everything goes
over the edge. I’m going to set my origin to be the edge of the
table.

(0 m) = (−0.4 m)(3 kg) + (−0.05 m)(2 kg) + (3 kg)x
3 kg + 2 kg + 3 kg

Multiplying both sides by the denominator gives

(0 m) = (−0.4 m)(3 kg) + (−0.05 m)(2 kg) + (3 kg)x

We solve for x to get

x = (0.4 m)(3 kg) + (0.05 m)(2 kg)
3 kg

= 0.433 m.

For whatever reason, some students really like this way. You com-
pare this way with that of the previous two examples and take your
pick.

I’ve been talking in terms of planks, but the principles in this section can
be applied to other things too.

When you purchase large dressers, most now come with wall anchors.
Some dressers only allow one drawer open at a time. These are both
motivated by principles of tipping. Having lots of heavy drawers filled
with clothes open at once is like moving a block out on a plank: all those
open drawers may move the dresser’s center of mass beyond the base of
its support and cause it to tip. The same thing could happen if a toddler
attempted to climb a heavy dresser, a horror scenario every parent dreads.
It turns out those wall anchors come with those dressers for a reason.
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8.3 Springs

4 kg

4 kg

4 kg

Unstretched
Length

Δx

Δx

Figure 8.11: Δx is the amount
of compression or stretch of
a spring from its un-stretched
length

You can breathe a bit easier now. Torques are gone.

I’m going to take the time in this chapter to talk about springs. This
may seem like an odd thing to talk about, especially because few of us
aspire to be toy makers. But there are a lot of things in nature which
are elastic which we model as if they were springs. Things as different
as tendons and the Higgs boson’s scalar field obey the very basic spring
physics that we learn in this section.

Some forces get weaker as you move farther from the source of the force.
Gravity is an example: the more distant I am from Earth, the weaker
its gravitational force on me becomes. But some forces get stronger as
the source of the force gets farther away. The spring is the archtypical
example: the more I stretch a spring, the stronger a force it exerts on
me.

Change In Length

Δx
This is how much spring’s
length differs from its nat-
ural length. It is not the
total length of the spring.

Every spring has a natural or unstretched length. When the spring
is at this length, it exerts no force. But when the spring is different from
this length, either stretched or compressed, the spring exerts force. We’ll
call the stretched or compressed length of the spring Δx (see Figure
8.11).

The force the spring exerts Fs is

Hooke’s Law

Fs = kΔx (8.2)

in the direction opposite of the stretch or compression

Spring Constant

k
The spring constant tells
us how “stiff” the spring
is that we are stretching.
A bigger value of k means
that the spring is harder
to stretch or compress. It
has units of N/m.

The constant k is the spring constant. It has units of Newtons per
meter, N/m. It tells you how stiff the spring is: the higher the k value,
the stiffer the spring.

This “law” governs how springs stretch and is called “Hooke’s Law.” Some
books will write this equation as �Fs = −k �Δx, the negative referencing
the “opposite direction” the spring force has compared to Δx. I find the
negative a bit pedantic and confusing: anyone with common sense knows
which way the spring force is felt. You might also see other textbooks
write this as Fs = kx. I avoid this also because you can confuse x with
the length of the spring instead of the difference between the spring’s
length and its natural length.

I’ll show you what I mean in the example below.
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Quick example: A spring (k = 120 N/m) is stretched 14 cm
beyond its natural length. What is the magnitude of the force
exerted by the spring?

We use equation (8.2) and get

Fs = (120 N/m)(0.14m) = 16.8 N.

Notice we had to convert to m.

This next example tries to distinguish natural length and stretched length
of the spring.

Quick example: A spring (k = 130 N/m) has a natural length
of 8 cm. It is stretched to a length of 10 cm. What is the
magnitude of the force exerted by the spring?

The Δx in (8.2) is not the total length of the spring. It is just the
stretched length. So our calculation of the force looks like

Fs = (130 N/m)(0.1 m − 0.08 m) = 26 N.

I had to convert the lengths to meters. Notice that I subtracted
off the natural length of the spring. The natural length doesn’t
count in this equation.

Spring Force Directly Proportional To Δx

The spring force is directly proportional to Δx. This means that the if
the change in length of spring doubles the force from the spring will also
double.

You can encounter problems which play with this direct proportionality
game.

Quick example: A spring is stretched 14 cm beyond its natural
length and exerts a force of 4 N. The spring is then relaxed so
that it is stretched only 7 cm. What forces does the spring exert?

Wait a minute! They didn’t give us a spring constant! But it
doesn’t matter. Because the formula Fs = kΔx means that Fs

is directly proportional to Δx. If the stretched length in halved
then so is the force. The answer is 2 N.

There are also these games where the spring constant is not initially
known but must be calculated to complete the problem. Some clever
people use a proportionality argument. But I usually just calculate the
spring constant from the data and use it to answer the question later
posed by the problem.
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Example 8.10

A spring is stretched 8 cm and exerts a force of 40 N. How much
force would it give if it were stretched 20 cm?

Find the spring constant k
We use Fs = kΔx:

(40 N) = k(0.08 m) ⇒ k = 40 N
0.08 m

= 500 N/m

Then use the spring constant to calculate new force
Again use Fs = kΔx to get

Fs = (500 N/m)(0.2 m) = 100 N.

Theoretical Aside: Hooke’s Law Applies Beyond Just Springs

Do all real springs behave like equation (8.2)? We just introduced Fs =
kΔx in the context of springs, so it might surprise you that the answer
is no. There are plenty of springs that do . . . to a point. Stretch the
spring too far, however, and the spring will quit supplying a restoring
force. We’ll talk about what is happening to the spring as it stretches
into this extreme limit in the next section.

Equally surprising is that most solid materials obey Hooke’s Law . . . for a
very small amount of stretching. If you pull on both sides of a solid brick,
microscopically the brick stretches like a very, very stiff spring. Let go
and microscopically it will oscillate about its relaxed length. The normal

Figure 8.12: The Higgs field,
the essence which fundamental
particles interact with to get their
masses, and the inflaton field, the
particle which spurred the acceler-
ation of the universe, are modeled
in part with Hooke’s Law. Credit:
ESO.

force is itself a spring phenomenon. How does the table “know” to push
up a 2 kg book exactly (2 kg)(9.8 m/s2)? The answer is that it doesn’t
but that the table is like a “mattress” of microscopic springs. As the book
sinks microscopically into the table, the springs in the table supply more
and more force until the force from the springs of the table (molecular
bonds) and the weight of the book exactly match. Then the book quits
sinking, being supported by a network of stretched/compressed molecular
bonds beneath it.

The point is when we discuss Hooke’s law, we are discussing much more
than springs. Virtually everything which is not a liquid or a gas can be
modeled with it, if only in a limited regime.

But the springs don’t stop there. Hooke’s law is used to study some of the
fundamental underpinnings of reality. The scalar field of the Higgs boson,
the particle which gives fundamental particles their mass is modeled with
Hooke’ Law. As you pore over quantum field theory textbooks, you’d
naively figure the model would be more sophisticated than just a spring,
but Hooke’s Law appears, as clear as day. The strong nuclear force, the
force which binds quarks and the nucleus of the atom together, is also a
Fs = kΔx-type force which gets stronger as nucleons move farther apart.

I remember the college lecture at SUU when I first learned about springs.
I rolled my eyes and thought what interest are mechanical springs to an
aspiring astrophysicist? Every solid object, from an elastic band to the
crust of a neutron star has a spring-like regime. And where there was no
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physical elasticity, a spring became a metaphor for a force whose strength
increased with distance. In these 6 years since I entered grad school, I
have not been able to get away from them.

And trust me, I’ve tried.

Springs and Newton’s 2nd Law

Because springs can supply a force, you can imagine that they sometimes
appear in F = ma-type problems.

In the homework, I’ve been you a comparatively easy problem with a
spring. I’m going to risk a more tricky problem as an example.

The key to remember is that a spring is just a force and you deal with it
just like other forces.

mg

FN

Fs

+x

+y

Figure 8.13: Free body diagram
for a block attached to a spring
on a frictionless slope.

Example 8.11

A block rests on a frictionless slope. How much is the spring (k = 50
N/m) stretched beyond its relaxed length?

3 kg

20◦

We draw our free body diagram, complete with tilted axes (Figure
8.13). I’m going to sum forces in the tilted x direction:∑

Fx = Fs + mg cos 250◦ = 0

Remember that the angle between mg and the negative, titled y
axis is equal to the angle of the slope. The question is asking for
Δx, so we plug in Fs = kΔx with k = 50 N/m and get

(50 N/m)Δx + (3 kg)(9.8 m/s2) cos 250◦ = 0

Solving for Δx gives

Δx = −(3 kg)(9.8 m/s2) cos 250◦

50 N/m
= 0.2 m.

The spring stretches 20 cm beyond its relaxed length.

You can see I dealt with the spring force a bit like I do friction or weight.
I first put in Fs when I’m summing forces in the x and y directions and
then substitute in kΔx to solve for my desired unknown. Like mg and
friction, the spring force is just another force which has a formula. You
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end up substituting in the formula for that force to solve the problem.
Not hard to deal with at all.

8.4 Strength, Stress and Strain

Tension is what happens when you take an object by opposite ends on
pull in opposite directions. Ropes come under tension when they are
tight, or when they are being pulled by both ends.

Tension can happen with other objects too. A steal beam, pulled from
both ends in opposite directions, is said to be under tension. Tension
is opposite of compression where an object feels forces from both sides
pressing inward.

Elastic Modulus

E
A measure of the lack
of elasticity of a material
(bigger numbers mean the
substance is more stiff).
It is usually reported in
units of giga pascals GPa.

Things stretch under tension, if only slightly. How much and object
stretches is dictated by how elastic the substance is. We report the lack
of elasticity of an object with the elastic modulus a.k.a. the Young’s
modulus E. For example, Titanium (E = 110.3 GPa) would have an
elastic modulus much larger than, say, a rubber band (E = 0.1 Gpa).

How much something stretches or compresses because of a force not only
depends on the material, but how much material is present. A 0.2 cm-
diameter steel beam will stretch more under a force than a 1 cm-diameter
steel beam. So the change in length ΔL is expected to be function of the
area of the object perpendicular to the stretch or compression. We call
this area (A) the cross-sectional area of the object.

Quick example: A 1-m diameter circular cement pillar supports
a large tell beam. What is the pillar’s cross sectional area?

The cross sectional area would be the area of a circle with a 1-m
diameter:

A = π(0.5 m)2 = 0.785 m2

In equation (8.3), E should be
given in Pa, not GPa. You should
almost always have a “something
×109” in for E.

If an object is under tension from some force F which has an original
length of L, then the following relation is true:

force︷︸︸︷
F

A︸︷︷︸
cross-sectional

area

= E︸︷︷︸
elastic

modulus

change
in length︷︸︸︷

ΔL

L︸︷︷︸
original
length

(8.3)

This formula works for both compression and tension. To work, ev-
erything needs to be in SI units which means that E should be given
in Pa not GPa.
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Quick example: A 1.5 mm-diameter copper wire (E = 117
GPa), originally 1.2 m in length, is stretched with a force of 5
kN. What is the new length of the wire?

We use equation (8.3), but first I’m going to get somethings
ready. The cross-sectional area A is the area of a circle with a
diameter of 1.5 mm, or a radius of 7.5 × 10−4 m. So A = πr2 =
π(7.5 × 10−4 m)2. The problem gives me the elastic modulus E
in terms of GPa, but we need to use just Pa for the equation. A
“giga” is 109 so we really have E = 177 × 109 Pa. Now we plug
all this into equation (8.3) and get:

5000 N
π(7.5 × 10−4 m)2 = (117 × 109 Pa) ΔL

1.2 m

So ΔL is then

5000 N
π(7.5 × 10−4 m)2

( 1.2 m
117 × 109 Pa

)
= 0.029 m.

Quick example: A square 0.5 m × 0.5 m diamonda (E = 1100
GPa) pillar supports a 6 × 106 kg roof in a building. If the pillar
is originally 10.0 m tall, by how much is it compressed?

The 6 × 106 kg is a mass, not a force. To turn this into a weight,
we need to multiply it by g. So F = (6 × 106 kg)(9.8 m/s2) =
5.88 × 107 N. The cross sectional area this time is a square, so
A = (0.5 m)(0.5 m) = 0.25 m2. We can now use equation (8.3)
again:

5.88 × 107 N
0.25 m2 = (1100 × 109 GPa) ΔL

10.0 m
We solve for ΔL as before:

ΔL = 5.88 × 107 N
0.25 m2

( 10.0 m
1100 × 109 GPa

)
= 0.002 m

The diamond pillar only compresses 2 mm.
aI know, I know.

Stress and Strain

The words tension and stress come from the same Latin root. In physics
stress is the amount of pulling force per unit area, while tension is just
the pulling force. Stress is F/A.

Strain is how much an object stretches (as a percent) as a result of the
stress or pulling force. Strain is ΔL/L.

If you look at the equation (8.3), you can see that stress and strain are
related by the Young’s modulus. In the elastic regime, this equation
correctly describes how stress and strain are related.
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F

A︸︷︷︸
stress

= E
ΔL

L︸︷︷︸
strain

There’s a linear relationship here, just like Hooke’s law. That’s not an
accident, it turns out. In the elastic regime, objects act like springs.
Stretch them and they will return to their normal length.

But nothing remains elastic with infinite stretching. Eventually the
material becomes damaged.

If you stretch an object too much, past what is called the elastic limit,
the object will not return to its normal length. This is like your slinky
after you were foolish enough to lend to your childhood friend; it got
stretched out so much that it no longer wanted to return to its normal
length. When this happens, you have stretched an object into the plastic
regime. The material has been permanently damaged.

Ultimate Tensile

Strength

UTS
The ultimate stress an ob-
ject can experience before
breaking. It has units of
pascals (Pa).

Eventually, the object “fails” or breaks. This happens when an object
exceeds its ultimate tensile strength (UTS). So we say that:

An object “fails” or breaks when

F

A
≥ UTS (8.4)

Strain ΔL/L

St
re

ss
F

/A

el
as

ti
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gi

m
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re
gi

m
e

UTS

Failure

Figure 8.14: Stress strain di-
agram for a fiducial substance.
The UTS for the substance is
drawn as a horizontal, red dashed
line.

A common way to represent the relationship between stress and strain
in various regimes is a stress-strain diagram (see Figure 8.14). As an
object in the elastic regime, stress and strain are related by a straight
line relationship. But when the substance is stretched into the plastic
regime, the curve flattens: less and less force gives more and more stretch.
Eventually the object fails when the stress on the substance exceeds the
ultimate tensile stress (UTS).

We use equation (8.4) to answer questions about when something breaks.
I’ll show a quick example below.

Quick example: What force is needed to barely break a 1.0
cm-diameter steel cable (UTS = 841 MPa)?

We’re using equation (8.4), but we’ll replace the inequality with
“=” because the question as for the force needed to barely break
the steel cable. The cross-sectional area A is the area of a 1
cm-diameter circle: A = π(0.005 m)2.

F

π(0.005 m)2 = 841 × 106 Pa

F = π(0.005 m)2(841 × 106 Pa) = 66,000 N

which is a lot. That would be like hanging the weight of a ∼ 6500
kg bull African elephant from the cable.
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“Stronger Than Steel”

Figure 8.15: Dragline spi-
der silk, the type of silk from
which spiders hang and the
spokes of spider orb webs, is
said to be stronger than steel.
Credit: TGoeller, public domain,
wikipedia.

You have probably heard that spider silk is “as strong as steel.” This
phrase is referring to the ultimate tensile strength of steel (841 MPa) and
dragline spider silk (1.3 GPa). It takes a greater stress to break spider
silk.

This demonstrates a worthwhile point about stress F/A. Stress already
takes into account the size of the substance. The fact that spider silk
breaks at a stress larger than the UTS of steel is saying “given its size
spider silk would take greater force to break.” Put another way, “if you
could make a strand of steel the same size as spider silk, spider silk could
withstand a larger force before breaking.”

But this phrase is also a bit misleading. It doesn’t mean that it requires
more stress to stretch it then steel, which is usually what we think of
when we think of strength. Spider silk (E = 1.2 GPa) stretches like crazy
under relatively little stress, where steel (E = 200 GPa) simply won’t.

So while spider silk is much more stretchy than steel, it requires more
stress to break. And in this sense, it is “stronger than steel.”

Quick example: Giant spiders are ubiquitous in movies.
Calculate the force required to break a 1 cm-radius strand of
dragline spider silk.

We’re again using equation (8.4), The cross-sectional area A is
the area of a 1 cm-diameter circle: A = π(0.01 m)2.

F

π(0.01 m)2 = 1.3 × 109 Pa

F = π(0.01 m)2(1.3 × 109 Pa) = 408,000 N ,

enough to support 7 bull african elephants.

Review

8.1 Torque Equilibrium
1. Choose a pivot

2. Choose a positive rotational direction

3. Sum torques and set them equation to 0 N m

8.2 Balance
• An object is balanced when its center-of-mass is above its

base of support

• Choose the pivot to be the balancing point or the fulcrum
about which the system will tip

8.3 Springs
Fs = kΔx

8.4 Strength, Stress and Strain

F

A
= E

ΔL

L
, An object breaks if: F

A
≥ UTS
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Problem Sets

8.1 Torque and Equilibrium

Remember to sum torques for these problems to
get your answers. Only summing forces in the
y direction will lead to single equations with 2
unknowns which are not possible to solve.

1. A 5.0 kg plank rests on two fulcrums as shown
below. Find the upward force supplied by ful-
crum F1.

F1 F2

8 kg

25 cm 5 cm

2. A 4.0 kg beam is attached to wall by a pivot.
Find the tension T in the upper cable.

50◦

0.25 m 0.30 m

5 kg

3. A 2.0 kg beam is attached to a wall by a pivot.
What is the tension in the cable?

20◦

0.1 m 0.35 m

2.5 kg

4. Holy Ty Redd An 8 kg beam is fixed to the left
wall by a pivot. A 1 kg mass is attached to the
beam via a rope strung over a pulley. Find the
normal force provided by the fulcrum F1.

0.3 m 0.1 m

0.35 m

1 kg

F1

This “hybrid” problem can be tackled exactly like
the others. Use the pivot of the bar on the wall
as your pivot and proceed as before.

8.2 Balance

1. A block has the dimensions given in the figure
below.

0.3 m

0.7 m

(a) Draw a picture of the block at its criti-
cal angle,when block is tipped so that the
center of mass is at the very edge of the
supporting base.

(b) What is the maximum angle that this
block could be tilted before it tips over?
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2. What is the maximum angle that this block
could be tilted before it tips over? Compare
this answer to your answer in question 1. Inter-
pret your difference in your answers for critical
angle in terms of the stability of the block.

0.8 m

0.3 m

3. What is the mass m which would balance the
system? Assume the board is massless.

4 kg 2 kgm

0.55 m 0.40 m
0.15 m

4. A 1 meter long, 2 kg board is placed on the
edge of a table. How far from the base of the
board may a 2 kg block be placed before the
board tips over?

2 kg
x

0.4 cm

8.3 Springs

1. A spring with a natural length of 10 cm is
stretched to the right to 15 cm. The spring
constant k is 40.0 N/m. How much force does
the spring exert? Which direction does it exert
this force?

2. 2-Step Problem It takes 10 N of force to stretch
a spring by 0.02 m. How much force will it take
to stretch the spring 0.06 m?

3. A very stiff spring has a spring constant k = 150
N/m and a natural length of 20 cm. What is
the springs new length after it is hung from the
ceiling and a 4 kg weight is attached to one end?

4 kg

x

8.4 Strength of Materials

1. A 5.0 m-long steel circular wire (E = 20 × 1010

N m2) with a diameter of 0.5 mm experiences
a stretching force of 500 N. What is the change
in length ΔL of the wire?
Because I have given you a circular wire, the
cross sectional area is a circle with area A = πr2.
Notice in the problem I have given you a diame-
ter whereas the the area formula calls for radius,
so we need to divide this by 2 before we can plug
it in.

2. What force would be required to stretch a cir-
cular copper wire (E = 11 × 1010 N m2) with a
radius of 0.5 cm by 1.0 cm? The copper wire is
originally 2.0 m long.

3. Some spider dragline silk has a diameter of 4.0
μm (4.0 × 10−6 m). It takes 0.065 N of force
to break the dragline3. What is the tensile
strength of spider dragline?

3These are “for-real” experimental values.
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